quarta-feira, 25 de abril de 2012

O Atomo



O átomo é a menor partícula que ainda caracteriza um elemento químico. Ele apresenta um núcleo com carga positiva (Z é a quantidade de prótons e "E" a carga elementar) que apresenta quase toda sua massa (mais que 99,9%) e Z elétrons determinando o seu tamanho.
Até fins do século XIX, era considerado a menor porção em que se poderia dividir a matéria. Mas nas duas últimas décadas daquele século, as descobertas do próton e do elétron revelaram o equívoco dessa ideia. Posteriormente, o reconhecimento do nêutron e de outras partículas subatômicas reforçou a necessidade de revisão do conceito de átomo.

Os atomistas na antiga Grécia

Por volta de 450 a.C. os átomos de Demócrito deveriam atender às seguintes condições:
·                     Os átomos constituíram toda e qualquer matéria;
·                     Os átomos seriam qualitativamente iguais, diferindo, apenas, na forma, no tamanho e na massa.
Para Demócrito, a grande variedade de materiais na natureza provinha dos movimentos dos diferentes tipos de átomos, que, ao se chocarem, formavam conjuntos maiores, gerando diferentes corpos, com características próprias. Os fundamentos de Demócrito para os átomos foram tomando corpo com o passar do tempo. Epicuro (341 a.C. - aproximadamente 270 a.C.) complementou suas ideias ao sugerir que haveria um limite para o tamanho dos átomos, justificando assim a razão de serem invisíveis.
Acreditava-se que a matéria seria constituída de elementos da naturezacomo fogo, água, terra e ar, que misturados em diferentes proporções resultariam em propriedades físico-químicas diferentes.
Leucipo e Demócrito imaginaram que a matéria não poderia ser dividida infinitamente, mas partindo-a várias vezes, chegaríamos a uma partículamuito pequena:uma esfera indivisível, impenetrável e invisível. Com a ajuda de Lucrécio,a ideia dos filósofos teve rápida propagação

EVOLUÇÃO HISTÓRICA DA IDEIA DE ÁTOMO

                                 

Modelo de Dalton

John Dalton, em 1803, criou um modelo que retomava o antigo conceito dos gregos. Ele imaginou o átomo como uma pequena esfera, com massa definida e propriedades características. Dessa forma, todas as transformações químicas podiam ser explicadas pelo arranjo de átomos. Toda matéria é constituída por átomos. Esses são as menores partículas que a constituem; são indivisíveis e indestrutíveis, e não podem ser transformados em outros, nem mesmo durante os fenômenos químicos. Os átomos de um mesmo elemento químico são idênticos em massa e se comportam igualmente em transformações químicas. As transformações químicas ocorrem por separação e união de átomos. Isto é, os átomos de uma substância que estão combinados de um certo modo, separam-se, unindo-se novamente de uma outra maneira, formando outras substâncias.


O modelo atômico de Thomson





Entre 1813 e 1834, um cientista chamado Michael Faraday estudou a relação entre as quantidades de materiais em transformações químicas e de eletricidade necessária para realizar essas transformações. Esses estudos evoluíram até que, em 1891, a unidade mais simples de eletricidade foi determinada e denominada elétron.
A descoberta de partículas com carga elétrica fez com que o modelo atômico de Dalton ficasse superado. Em 1897, Thomson idealizou um experimento para medir a carga elétrica do elétron. Com base em seu experimento, e considerando o átomo eletricamente neutro (com quantidades iguais de partículas positivas e negativas), ele representou o átomo como uma esfera uniforme, de carga positiva, incrustada de elétrons (partículas negativas). Daí vem o nome do modelo:"pudim de passas".


O modelo atômico de Rutherford




Em 1908, realizando experiências de bombardeio de lâminas de ouro com partículas alfa (partículas de carga positiva, liberadas por elementos radioativos), Rutherford fez uma importante constatação: a grande maioria das partículas atravessava diretamente a lâmina, algumas sofriam pequenos desvios e outras, em número muito pequeno (uma em cem mil), sofriam grandes desvios em sentido contrário.
A partir dessas observações, Rutherford chegou às seguintes conclusões:
·                     No átomo existem espaços vazios; a maioria das partículas o atravessava sem sofrer nenhum desvio.
·                     No centro do átomo existe um núcleo muito pequeno e denso; algumas partículas alfa colidiam com esse núcleo e voltavam, sem atravessar a lâmina.
·                     O núcleo tem carga elétrica positiva; as partículas alfa que passavam perto dele eram repelidas e, por isso, sofriam desvio em sua trajetória.
Pelo modelo atômico de Rutherford, o átomo é constituído por um núcleo central, dotado de cargas elétricas positivas (prótons), envolvido por uma nuvem de cargas elétricas negativas (elétrons).
Rutherford demonstrou, ainda, que praticamente toda a massa do átomo fica concentrada na pequena região do núcleo.
Dois anos depois de Rutherford ter criado o seu modelo, o cientista dinamarquês Niels Bohr o completou, criando o que hoje é chamado modelo planetário. Para Bohr, os elétrons giravam em órbitas circulares, ao redor do núcleo. Depois desses, novos estudos foram feitos e novos modelos atômicos foram criados. O modelo que representa o átomo como tendo uma parte central chamado núcleo, contendo prótons e nêutrons, serve para explicar um grande número de observações sobre os materiais.


O modelo atômico de Niels Bohr e a mecânica quântica



O modelo planetário de Niels Bohr foi um grande avanço para a comunidade científica, provando que o átomo não era maciço. Segundo a Teoria Eletromagnética, toda carga elétrica em movimento em torno de outra, perde energia em forma de ondas eletromagnéticas. E justamente por isso tal modelo gerou certo desconforto, pois os elétrons perderiam energia em forma de ondas eletromagnéticas, confinando-se no núcleo, tornando a matéria algo instável.
Bohr, que trabalhava com Rutherford, propôs o seguinte modelo: o núcleo contendo os prótons e nêutrons e definiu as órbitas estacionárias, onde oelétron orbitaria o núcleo, sem que perdesse energia. Entre duas órbitas, temos as zonas proibidas de energia, pois só é permitido que o elétronesteja em uma das órbitas. Ao receber um quantum, o elétron salta deórbita, não num movimento contínuo, passando pela área entre as órbitas (daí o nome zona proibida), mas simplesmente desaparecendo de uma órbita e reaparecendo com a quantidade exata de energia. Se um pacote com energia insuficiente para mandar o elétron para órbitas superiores encontrar o elétron, nada ocorre. Mas se um fóton com a energia exata para que o elétron salte para órbitas superiores, ele certamente o fará, depois, devolvendo a energia absorvida em forma de ondas eletromagnéticas.



ESTRUTURA






Se o núcleo de um átomo fosse do tamanho de um limãocom um raio de 3 cm, os elétrons mais afastados estariam cerca de 3 km de distância.
Os cientistas, por meio de técnicas avançadas, já perceberam a complexidade do átomo. Já comprovaram a presença de inúmeras partículas em sua constituição e desvendaram o comportamento dessas partículas. Mas para construir alguns conceitos que ajudam a entender a química do dia-a-dia, o modelo de átomo descrito por Rutherford-Bohr é suficiente. Na constituição dos átomos predominam os espaços vazios. O núcleo, extremamente pequeno, é constituído por prótons e nêutrons. Em torno dele, constituindo a eletrosfera, giram os elétrons.
O diâmetro da eletrosfera de um átomo é de 10,000 a 100,000 vezes maior que o diâmetro de seu núcleo, e sua estrutura interna pode ser considerada , para efeitos práticos, oca; pois para encher todo este espaço vazio de prótons e nêutrons (ou núcleos) necessitaríamos de um bilhão de milhões de núcleos…
O átomo de hidrogênio é constituído por um só próton com um só elétron girando ao seu redor. O hidrogênio é o único elemento cujo átomo não possui nêutrons.
O elétron e o próton possuem a mesma carga, porém não a mesma massa. O próton é 1836,11 vezes mais massivo que o elétron. Usando, como exemplo hipotético, um átomo de vinte prótons e vinte nêutrons em seu núcleo, e este estando em equilíbrio eletrodinâmico, terá vinte elétronsorbitando em suas camadas exteriores. Sua carga elétrica estará em perfeito equilíbrio eletrodinâmico, porém 99,97% de sua massa encontrar-se-á no núcleo. Apesar do núcleo conter praticamente toda a massa, seu volume em relação ao tamanho do átomo e de seus orbitais é minúsculo. Onúcleo atômico mede em torno de 10 - 13 centímetros de diâmetro, enquanto que o átomo mede cerca de 10 8 centímetros.




Historia da Tabela Periodica


A história da tabela periódica

A história da tabela periódica começa em 1817 com as "lei das tríades" de Johann Wolfgang Döbereiner e termina com a disposição sistemática deDmitri Mendeleiev e Lothar Meyer.
Um pré-requisito necessário para construção da tabela periódica, foi a descoberta individual dos elementos químicos. Embora os elementos, tais comoouro (Au), prata (Ag), estanho (Sn), cobre (Cu), chumbo (Pb) e mercúrio (Hg) fossem conhecidos desde a antiguidade. A primeira descoberta científica de um elemento, ocorreu em 1669, quando o alquimista Henning Brand descobriu o fósforo.
Durante os duzentos anos seguintes, um grande volume de conhecimento relativo às propriedades dos elementos e seus compostos, foram adquiridos pelos químicos. Com o aumento do número de elementos descobertos, os cientistas iniciaram a investigação de modelos para reconhecer as propriedades e desenvolver esquemas de classificação.
A primeira classificação, foi a divisão dos elementos em metais e não-metais. Isso possibilitou a antecipação das propriedades de outros elementos, determinando assim, se seriam ou não metálicos.

As primeiras tentativas

A lista de elementos químicos, que tinham suas massas atômicas conhecidas, foi preparada por John Dalton no início do século XIX. Muitas das massas atômicas adotadas por Dalton, estavam longe dos valores atuais, devido a ocorrência de erros na tabela. Os erros foram corrigidos por outros cientistas, e o desenvolvimento de tabelas dos elementos e suas massas atômicas, centralizaram o estudo sistemático da química.
Os elementos não estavam listados em qualquer arranjo ou modelo periódico, mas simplesmente ordenados em ordem crescente de massa atômica, cada um com suas propriedades e seus compostos.
Os químicos, ao estudar essa lista, concluíram que ela não estava muito clara. Os elementos cloro, bromo e iodo, que tinham propriedades químicas semelhantes, tinham suas massas atômicas muito separadas.
Em 1829, Johann W. Döbereiner teve a primeira ideia, com sucesso parcial, de agrupar os elementos em três - ou tríades. Essas tríades também estavam separadas pelas massas atômicas, mas com propriedades químicas muito semelhantes.
A massa atômica do elemento central da tríade, era supostamente a média das massas atômicas do primeiro e terceiro membros. Lamentavelmente, muitos dos metais não podiam ser agrupados em tríades. Os elementos cloro, bromo e iodo eram uma tríade,lítio,sódio e potássio formavam outros.

A segunda tentativa

O segundo modelo foi sugerido em 1864 por John A.R. Newlands (professor de química no City College em Londres). Sugerindo que os elementos poderiam ser arranjados comparativamente a uma escala musical. Como em uma escala musical, existe uma repetição das notas a cada oitava, os elementos químicos teriam uma repetição periódica.
Este modelo colocou o elemento lítio, sódio e potássio juntos. Esquecendo o grupo dos elementos cloro, bromo e iodo, e os metais comuns como o ferro e o cobre. A ideia de Newlands foi ridicularizada pela analogia com os sete intervalos da escala musical. A Chemical Society recusou a publicação do seu trabalho periódico (Journal of the Chemical Society).
A base teórica na qual os elementos químicos estão arranjados atualmente - número atômico e teoria quântica - era desconhecida naquela época e permaneceu assim por várias décadas. A organização da tabela periódica, foi desenvolvida não teoricamente, mas com base na observação química de seus compostos, por Dmitri Mendeleiev


A tabela periódica, segundo Mendeleiev

Dmitri Mendeleiev (1834  1907) nasceu em Tobolsk, na Rússia, sendo o mais novo de dezessete irmãos. Mendeleev formou-se em química na Universidade de São Petersburgo, trabalhou na Alemanha, França e nos Estados Unidos. Escreveu um livro de química orgânica em 1869.
Em 1869, enquanto escrevia seu livro de química inorgânica, organizou os elementos na forma da tabela periódica atual, paralelamente a Mendeleiev, o alemão Lothar Meyer também desenvolvia um trabalho semelhante em seu país. Mendeleiev criou uma carta para cada um dos 63 elementos conhecidos. Cada carta continha o símbolo do elemento, a massa atômica e suas propriedades químicas e físicas. Colocando as cartas em uma mesa, organizou-as em ordem crescente de suas massas atômicas, agrupando-as em elementos de propriedades semelhantes. Formou-se então a tabela periódica.
A Importância da tabela de Mendeleiev sobre as outras é que esta exibia semelhanças, não apenas em pequenos conjuntos, como as tríades. Mostravam semelhanças numa rede de relações vertical, horizontal e diagonal. A partir deste fator, Mendeleiev conseguiu prever algumas propriedades (pontos de fusão e ebulição, densidade, dureza, retículo cristalino, óxidos, cloretos) de elementos químicos que ainda não haviam sido descobertos em sua época. Devido a esta previsibilidade, o trabalho de Mendeleiev foi amplamente aceito, sendo assim considerado o pai da tabela periódica atual, mas de maneira justa, tanto ele quanto o seu correlato alemão, Meyer, são os verdadeiros pais da atual classificação periódica.


A descoberta do número atômico

Em 1913, o cientista britânico Henry Moseley descobriu que o número de prótons no núcleo de um determinado átomo era sempre o mesmo. Moseley usou essa idéia para o número atômico de cada átomo. Quando os átomos foram arranjados de acordo com o aumento do número atômico, os problemas existentes na tabela de Mendeleiev desapareceram. Devido ao trabalho de Moseley, a tabela periódica moderna esta baseada no número atômico dos elementos.
A tabela atual difere bastante da de Mendeleiev. Com o passar do tempo, os químicos foram melhorando a tabela periódica moderna, aplicando novos dados, como as descobertas de novos elementos ou um número mais preciso na massa atômica, e rearranjando os existentes, sempre em função dos conceitos originais.

As últimas modificações

O último elemento que ocorre na natureza a ser descoberto, em 1925, foi o rénio. Desde então, os novos elementos que entraram para a tabela periódica foram produzidos pelos cientistas, através da fusão de átomos de diferentes substâncias.
A última maior troca na tabela, resultou do trabalho de Glenn Seaborg, na década de 1950. À partir da descoberta do plutônio em 1940, Seaborg descobriu todos os elementos transurânicos (do número atômico 94 até 102). Reconfigurou a tabela periódica colocando a série dos actnídeos abaixo da série dos lantanídios.
Em 1951, Seaborg recebeu o Prêmio Nobel em química, pelo seu trabalho, e sua pesquisa. O elemento 106 tabela periódica é chamado seabórgio, em sua homenagem.
O sistema de numeração dos grupos da tabela periódica, usados atualmente, são recomendados pela União Internacional de Química Pura e Aplicada (IUPAC). A numeração é feita em algarismos arábicos de 1 a 18, começando a numeração da esquerda para a direita, sendo o grupo 1, o dos metais alcalinos e o 18, o dos gases nobres

Resumo da Historia da Quimica


Primeiros avanços da química

O princípio do domínio da química (que para alguns antropólogos coincide com o princípio do homem moderno) é o domínio do fogo. Há indícios de que faz mais de 500.000 anos, em tempos do Homo erectus, algumas tribos conseguiram este sucesso que ainda hoje é uma das tecnologias mais importantes. Não só dava luz e calor na noite, como ajudava a proteger-se contra os animais selvagens. Também permitia o preparo de comida cozida, reduzindo microorganismos patogênicos e era mais facilmente digerida. Assim, baixava-se a mortalidade e melhoravam as condições gerais de vida.
O fogo também permitia conservar melhor a comida e especialmente a carne e os peixes, secando-os e defumando-os.
Finalmente, foram imprescindíveis para o futuro desenvolvimento da metalurgia, materiais como a cerâmica e o vidro, além da maioria dos processos químicos.



A química como ciência

Os filósofos gregos Empédocles e Aristóteles acreditavam que as substâncias eram formadas por quatro elementos: terra, vento, água e fogo. Paralelamente, discorria outra teoria, o atomismo, que postulava que a matéria era formada por átomos, partículas indivisíveis que se podiam considerar a unidade mínima da matéria. Esta teoria, proposta pelo filósofo grego Demócrito de Abdera, não foi popular na cultura ocidental, dado o peso das obras de Aristóteles na Europa. No entanto, tinha seguidores (entre eles Lucrécio) e a ideia ficou presente até o princípio da Idade Moderna.
Entre os séculos III a.C. e o século XVI d.C a química estava dominada pela alquimia. O objetivo de investigação mais conhecido da alquimia era a procura da pedra filosofal, um método hipotético capaz de transformar os metais em ouro e o elixir da longa vida. Na investigação alquímica desenvolveram-se novos produtos químicos e métodos para a separação de elementos químicos. Deste modo foram-se assentando os pilares básicos para o desenvolvimento de uma futura química experimental.
A química, como é concebida atualmente, começa a desenvolver-se entre os séculos XVI e XVII. Nesta época estudou-se o comportamento e propriedades dos gases estabelecendo-se técnicas demedição. Aos poucos, foi-se desenvolvendo e refinando o conceito de elemento como uma substância elementar que não podia ser descomposto em outras. Também esta época desenvolveu-se ateoria do flogisto para explicar os processos de combustão.

Por volta do século XVIII a química adquire definitivamente as características de uma ciência experimental. Desenvolvem-se métodos de medição cuidadosos que permitem um melhor conhecimento de alguns fenômenos como o da combustão da matéria, Antoine Lavoisier, o responsável por perceber a presença do carbono nos seres vivos e a complexidade de suas ligações em relação aos compostos inorgânicos e refutador da teoria do flogisto, e assentou finalmente os pilares fundamentais da química moderna




O vitalismo e o começo da química orgânica

Tão cedo se compreendessem os princípios da combustão, outro debate de grande importância apoderou-se da química: o vitalismo e a distinção essencial entre a matéria orgânica e inorgânica. Esta teoria assumia que a matéria orgânica só podia ser produzida pelos seres vivos atribuindo este fato a uma vis vitalis (força ou energia vital) inerente na própria vida. A base desta teoria era a dificuldade de obter matéria orgânica a partir de precursores inorgânicos. Este debate foi revolucionado quando Friedrich Wöhler descobriu, acidentalmente, como se podia sintetizar a ureia a partir do cianato de amónio, em 1828, mostrando que a matéria orgânica podia criar-se de maneira química. No entanto, ainda hoje se mantém a classificação em química orgânica e inorgânica, ocupando-se a primeira essencialmente dos compostos do carbono e a segunda dos compostos dos demais elementos. Os motores para o desenvolvimento da química orgânica eram, no princípio, a curiosidade sobre os produtos presentes nos seres vivos (provavelmente com a esperança de encontrar novos fármacos) e a síntese dos corantes ou tinturas. A última surgiu depois da descoberta da anilina por Runge e a primeira síntese de um corante artificial por Perkin.
Depois adicionaram-se os novos materiais como os plásticos, os adesivos, os cristais líquidos, os fitossanitários, etc.
Até à Segunda Guerra Mundial a principal matéria-prima da indústria química orgânica era o carvão, dada a grande importância da Europa no desenvolvimento desta parte da ciência e o fato de que em Europa não há grandes jazidas de alternativas como o petróleo.
Com o final da segunda guerra mundial e o crescente peso dos Estados Unidos no setor químico, a química orgânica clássica se converte cada vez mais na petroquímica que conhecemos hoje. Uma das principais razões era a maior facilidade de transformação e a grande variedade de produtos derivados do petróleo.